"EXCIPIENT FEEDSTUFFS": A MUST FOR ANTIMICROBIAL STEWARDSHIP

Jérôme R. E. del Castillo, D.M.V., I.P.S.A.V, M.Sc., Ph.D.

Alireza Jafarzadeh, Jabin Sultana, Araceli Garcia Ac & Xavier Banquy

Université de Montréal, Colleges of Veterinary Medicine and Pharmacy

OUTLINE

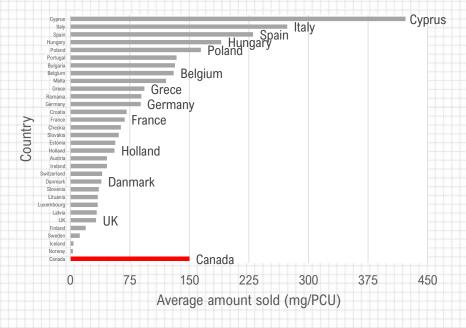
Introduction

Antimicrobial overuse in Canadian livestock: focus on pork production Antimicrobial stewardship: shift focus to refining the necessary uses Feed-drug interactions: a neglected topic in antimicrobial stewardship In vitro drug dissolution: a tool for predicting oral drug absorption

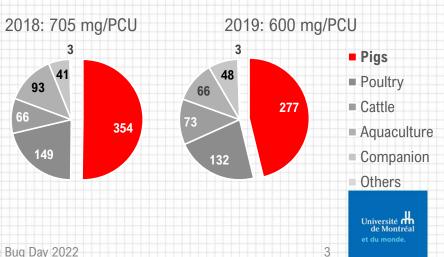
Pilot study on drug dissolution from medicated feedstuffs

Hypotheses and objectives

Methods


Main results

Implications for further research


ANTIMICROBIAL OVERUSE IN CANADIAN LIVESTOCK

Veterinary antimicrobials: Canada (2018) vs. Europe (2017)

Species distribution of veterinary antimicrobials sold in Canada

- Largest use in pork production
 - Use decreased between 2018 and 2019: antimicrobial stewardship?

Nov. 23, 2022 del Castillo et al. - Big Bug Day 2022

ANTIMICROBIAL STEWARDSHIP (AMS) IN PIGS

AMS: multifaceted approaches aiming to sustain the efficacy of antibiotics and minimize the emergence of antimicrobial resistance

5R principle: Responsibility, Reduction, Replacement, Refinement, and Review

Current focus is on the first three R's

Responsibility: veterinary prescription, improving compliance, new regulations

Reduction: biosecurity, hygiene, diagnosis, cut growth promotion uses

Replacement: alternatives to antimicrobials

Refinement: water medication

Review: AMU benchmarking

Can we further refine the necessary uses of antibiotics in pigs?

ORAL DRUG ABSORPTION IN PIGS IS LOW

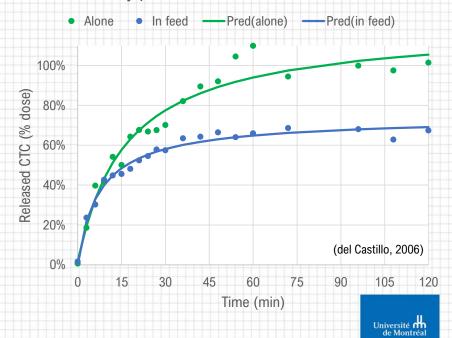
Bioavailability

Fraction of the dose that reaches the systemic bloodstream

Oral drug bioavailability: humans vs. pigs

Drug	Humans	Pigs	
Oxytetracycline	60%	5%	
Doxycycline	93%	22%	
Amoxicillin	96%	25%	

A physiological or a biopharmaceutical problem?


Pigs are a model for human digestive physiology: similar structure and function Same active drug substances, but their dosing formulations differ

FEED-DRUG INTERACTIONS ARE NEGLECTED IN AMS

- Always investigated for human oral drugs, not for drugs used in livestock
 - Fixed-dose label, whatever the type of feed
- Some studies in pigs, but 30 years ago
 - · Bioavailability in fasted vs. fed pigs
 - · Effects of feed moisture or acidifiers
- Interaction mechanisms are unknown
 - Pharmacokinetic?
 - Pharmacodynamic?
 - Nutritional status?

In vitro dissolution of chlortetracycline Dietary premix alone vs. medicated feed

PILOT IN VITRO DRUG DISSOLUTION STUDY

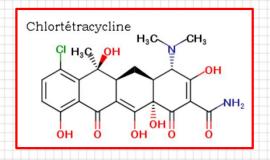
Hypotheses

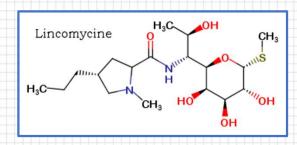
Because of their water-holding capacity (WHC), the feedstuffs limit the availability of the digestive fluids in which the oral drugs must dissolve

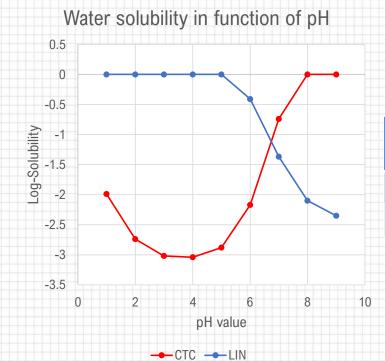
The WHC may favor the adsorption of the dissolved drug to the feedstuff particles

Therefore, feedstuffs with lower WHC should improve the release of the oral drugs

Objectives


Measure the WHC of major porcine feedstuffs and find their nutritional determinants


Measure the effect of feedstuff WHC on the in vitro drug release


Two unrelated dietary premixes: chlortetracycline and lincomycin

TESTED DRUG PREMIXES

Drug	Premix particle hardness (N)
CTC	19,35
LIN	7,50

Université m de Montréal et du monde.

del Castillo et al. - Big Bug Day 2022

Nov. 23, 2022

METHODS

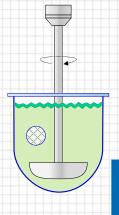
WHC of major porcine feedstuffs

Method of Robertson (1981): soaking → paper filtration → freeze drying Corn, Rye, Wheat, DDGS, Soybean meal

Nutritional determinants of WHC

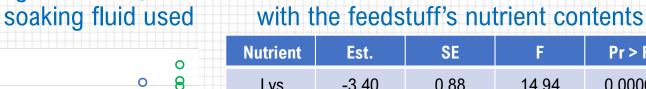
Crude protein, energy, fiber, amino acids, ash, minerals, etc.

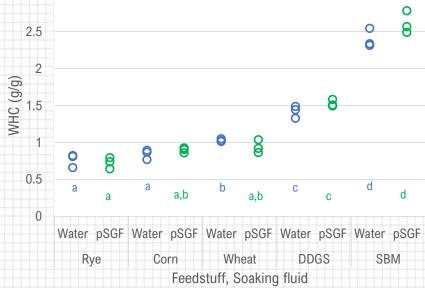
In vitro drug dissolution kinetics


USP type-2 apparatus

Premixes tested alone or mixed into each feedstuff

Simulated porcine physiological conditions


Temperature: 40°C

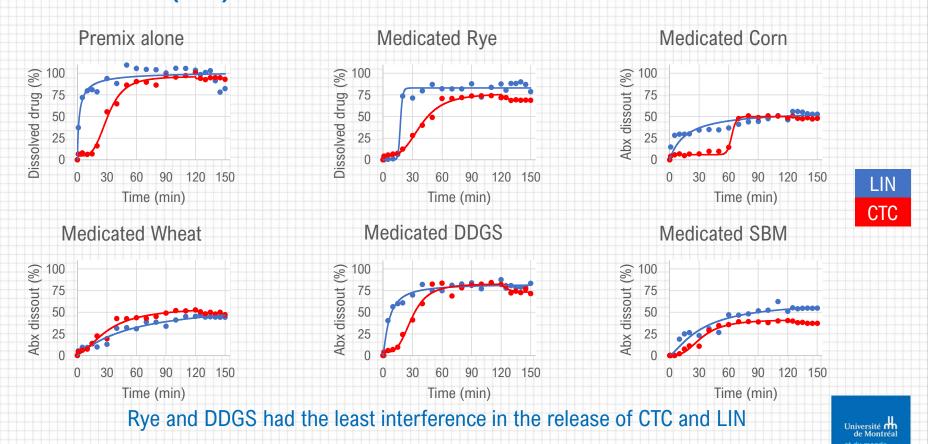

Gastrointestinal pH: 1.6 (stomach) \rightarrow 5.8 (duodenum) \rightarrow 6.2 (proximal jejunum)

RESULTS (1): WHC OF TESTED FEEDSTUFFS

The WHC differs among feedstuffs, with minimal effect of the soaking fluid used

Nutrient	Est.	SE	F	Pr > F
Lys	-3,40	0,88	14,94	0,0006
Trp	3,75	0,83	20,29	<0,0001
Asp	2,00	0,55	13,10	0,001
K	-0,83	0,36	5,19	0,03
E.Dig.	0,054	0,024	5,19	0,03

The differences in WHC are associated


Université de Montréal et du monde.

10

3

RESULTS (2a): DISSOLUTION EXPERIMENTS

Nov. 23, 2022

del Castillo et al. - Big Bug Day 2022

11

RESULTS (2b): DETERMINANTS OF DRUG DISSOLUTION

		Solutions of fixed effects		Type III test	
Effect	Level	Estimate	SE	F	P-value
Intercept		93,3	13,2		
Drug	CTC LIN	-26,0 0	17,0 -	2,33	0,13
Time		0,12	0,15	7,17	0,008
Time × Drug	CTC LIN	0,34 0	0,22	2,45	0,11
WHC		-119,4	17,0	49,16	< 0,0001
рН		-0,55	0,57	0,93	0,34
Ash		37,7	6,0	39,03	< 0,0001

Université m de Montréal et du monde.

DISCUSSION

In vitro drug dissolution: a tool for predicting oral drug absorption

USP type-2 apparatus: used in the pharmaceutical industry for almost 50 years Quality control, bioequivalence testing, formulation changes, etc.

WHC: a new feed-drug interaction mechanism

The availability of the solvent becomes the limiting step to drug release

The ash content of feedstuffs favored the release of the dietary drug "Salting-in" effect?

Increasing solvent pH slightly decreased the release of both drugs

Expected for both LIN (decreased ionization) and CTC (drug-metal complexation)

NEXT STEPS

Additivity of the WHC hindering effect when using mixtures of feedstuffs

Is it affected by the proportions of feedstuffs?

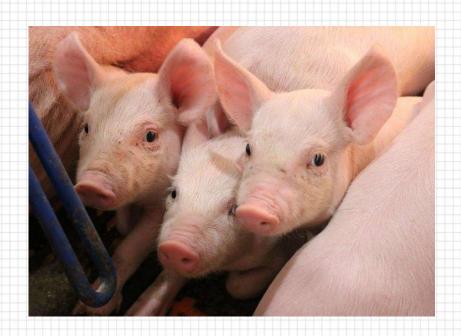
Weaner, grower, finisher, breeder feeds

Is it affected by the choice of feedstuffs?

Replacing the usual feedstuffs with « excipient feedstuffs »

Affinity of the feedstuffs towards the dissolved drug molecules

Does water medication circumvent this problem?


Dosing regimens for weanling pigs

In vitro – in vivo correlations

Do we need to further refine our in vitro system?

THANK YOU! ANY QUESTIONS?

Funding

Test materials

Freeze dryer

Université H de Montréal et du monde.