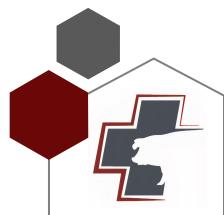
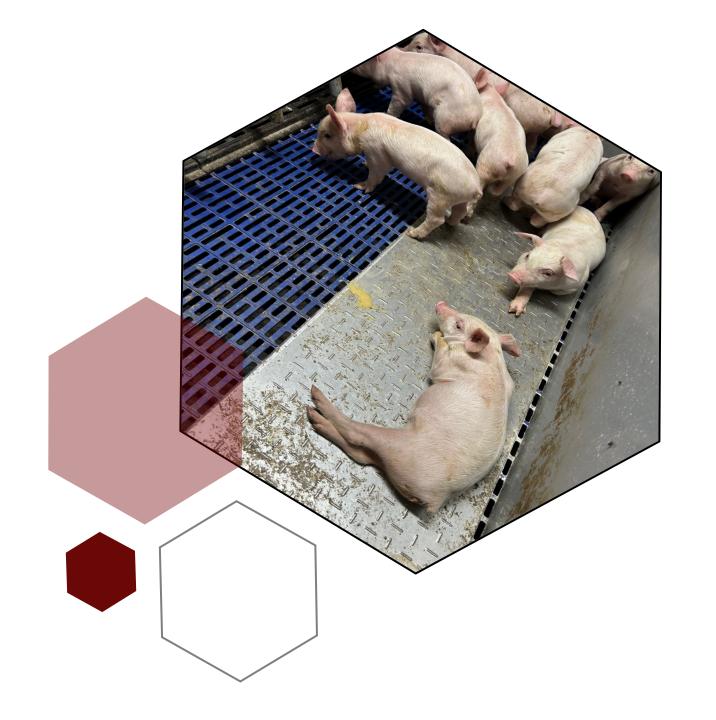

Big Bug Day: Swine Enteric Viruses

Ryan Tenbergen DVM, MSc December 6th, 2023

Agenda


Sapovirus

- What we know
- Case study



PED

- 2023 was a bad year!
- What happened
- What we can learn

Sapovirus

About the Virus

- Family Caliciviridae genus Sapovirus
- Sapovirus first characterized in 1999; identified as a potential emerging pathogen in 2019
- Genotype 3 is pathogenic, others are not
- Virus somewhat conserved to date
 - Within subgroups, 2-3% difference in homology
 - Between subgroups, ~85% homology

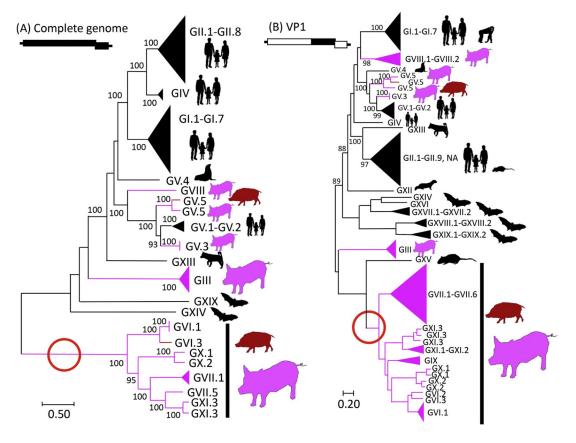
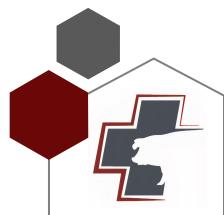
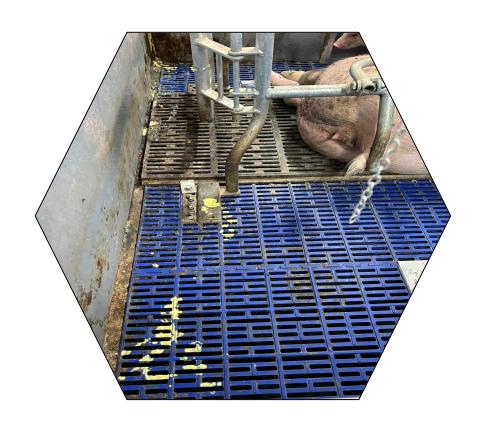
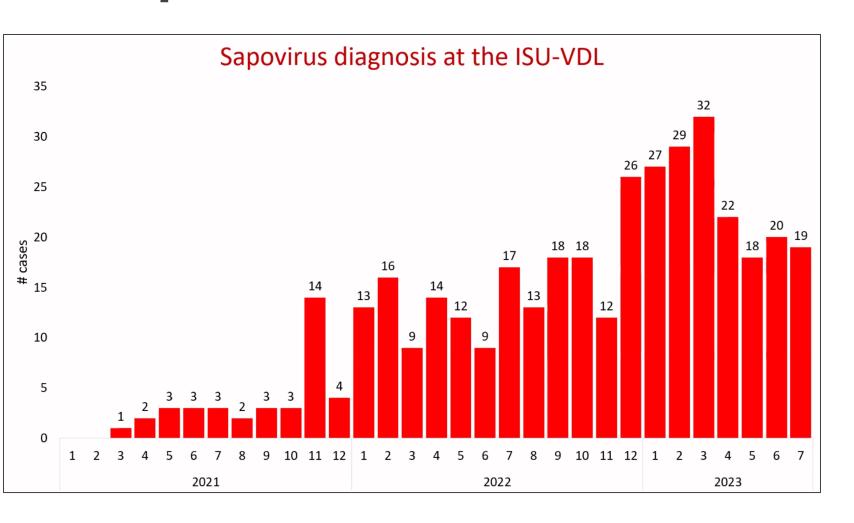
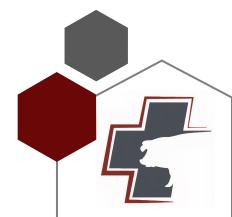
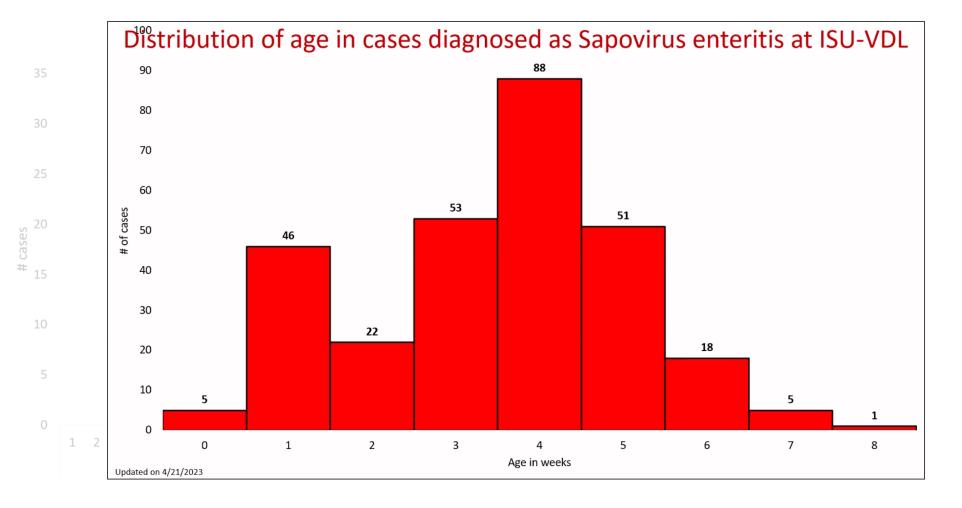
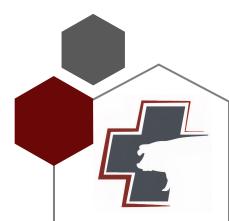




Image: Nagai et al., 2020

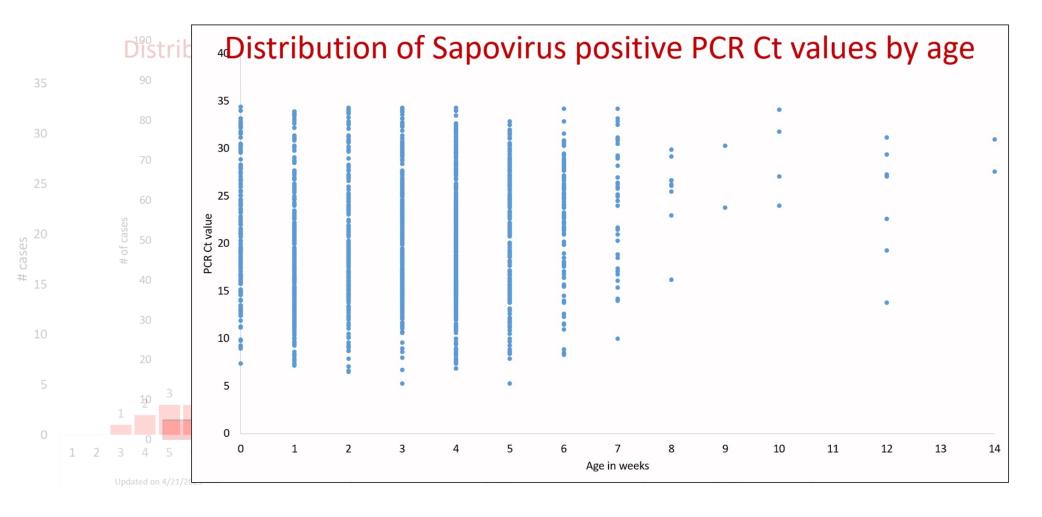

What We Know

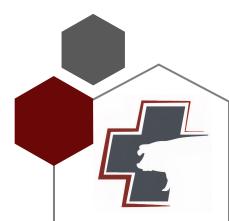

- Causes diarrhea in suckling pigs
- Occurs in mid-lactation¹
- Can cause 1-2 lbs of weaning weight loss²
- 2019 U.S. prevalence results³:
 - 234 fecal samples from U.S. pigs with diarrhea
 - 106 samples (45.3%) were positive, Ct 26.0 ± 0.5
 - 102 fecal samples from clinical healthy U.S. pigs
 - 44 samples (43.1%) were positive, Ct 33.2 ± 0.9
- Comments from the field in 2023:
 - "7-10 day old scour that looks like coccidiosis" (Dr. Ackerman, Pork Vet Solutions)


Sapovirus Data from Iowa State University



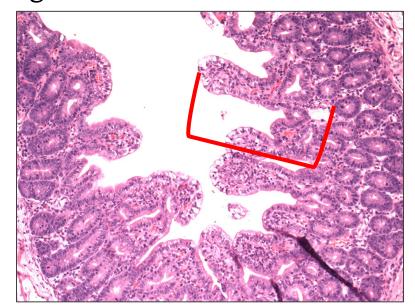
Source: Iowa State University; SHIC webinar August 30, 2023

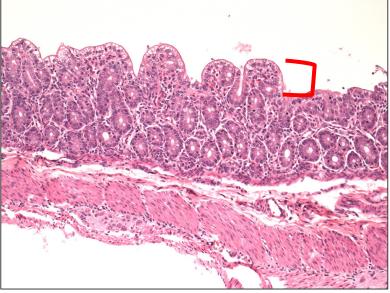

Sapovirus Data from Iowa State University



Source: Iowa State University; SHIC webinar August 30, 2023

Sapovirus Data from Iowa State University

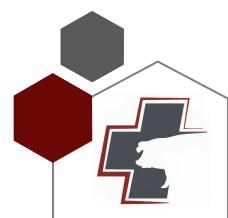


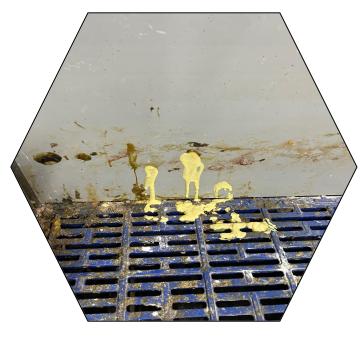


Source: Iowa State University; SHIC webinar August 30, 2023

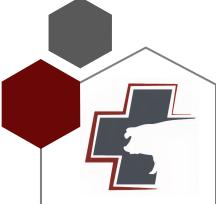
Sapovirus Diagnosis Can Be a Challenge

- Positivity does not mean causality!
 - Can be found in mixed infections
 - Healthy animals can be positive
- Rotavirus and Sapovirus cause the same disease
 - Atrophic enteritis "hollow tube"
 - Segmental lesions can lead to missing diagnosis

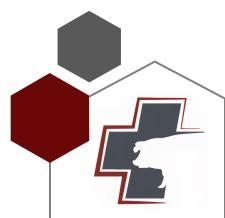


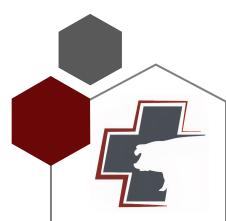

Sequivity Sapovirus Vaccine

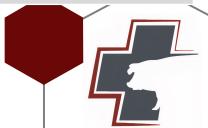
- First produced in 2021 for commercial use
- Use of vaccine (Merck U.S. data):
 - Less positive litters (25.6% vs 53.6%)
 - Lower PWM (2.13% reduction, more effect on gilts)
- 2.5 million doses sold in US
- "Vaccine is a game-changer; disease costs 1-2 piglets per litter" (Dr. Ackerman, Pork Vet Solutions)



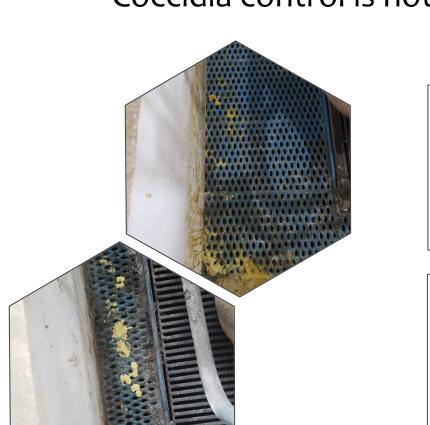
Sapovirus Case: Looks Like Coccidia!

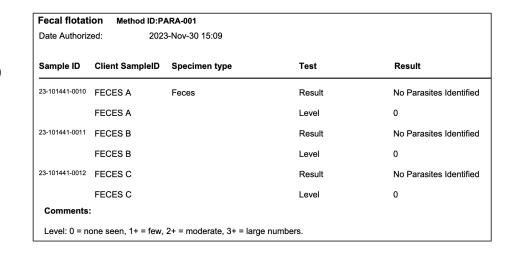



Date	Sample Type	Result		
6 weeks after first farrowing	3 fresh manure samples	Negative for RotavirusNegative for coccidia oocysts	Negative for pathogenic E. coliPossible Clostridium perfringens?	

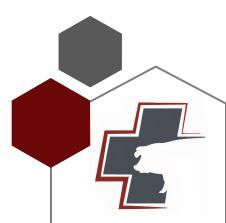

Date	Sample Type	Result		
6 weeks after first farrowing	3 fresh manure samples	Negative for RotavirusNegative for coccidia oocysts	Negative for pathogenic E. coliPossible Clostridium perfringens?	
1 month later	6 fresh manure samples	 Negative for coccidia oocysts Negative for pathogenic E. coli 1/6 Positive for Rotavirus (Ct 26) 	 Possible Clostridium perfringens? 1/2 Positive for Sapovirus (Ct 21) 	

Date	Sample Type	Result		
6 weeks after first farrowing	3 fresh manure samples	Negative for RotavirusNegative for coccidia oocysts	Negative for pathogenic E. coliPossible Clostridium perfringens?	
1 month later	6 fresh manure samples	 Negative for coccidia oocysts Negative for pathogenic E. coli 1/6 Positive for Rotavirus (Ct 26) 	 Possible Clostridium perfringens? 1/2 Positive for Sapovirus (Ct 21) 	
2 weeks later	Euthanized 2 piglets for tissues	 <u>Severe atrophic enteritis</u> for both pigs <i>Negative</i> for Rotavirus 	 Positive for Sapovirus (Ct 20 and 22) Sequenced Sapovirus Genotype 3 VP1 	




Date	Sample Type	Result		
6 weeks after first farrowing	3 fresh manure samples	Negative for RotavirusNegative for coccidia oocysts	Negative for pathogenic E. coliPossible Clostridium perfringens?	
1 month later	6 fresh manure samples	 Negative for coccidia oocysts Negative for pathogenic E. coli 1/6 Positive for Rotavirus (Ct 26) 	 Possible Clostridium perfringens? 1/2 Positive for Sapovirus (Ct 21) 	
2 weeks later	Euthanized 2 piglets for tissues	 Severe atrophic enteritis for both pigs Negative for Rotavirus 	 Positive for Sapovirus (Ct 20 and 22) Sequenced Sapovirus Genotype 3 VP1 	
1 week later	Submitted 3 live pigs	 Severe atrophic enteritis for all pigs 1/3 Positive for for Rotavirus A (Ct 30) Neutrophilic colitis (likely dysbiosis) 	 Positive for Sapovirus (Ct 15, 16, 19) Sequenced Sapovirus Genotype 3 VP1 	

New Case – Interpretation?


Coccidia control is not working (21-25 days)

Rotavirus, group A, B, C Method ID:V-005								
Date Authorized: 2023-Nov-30 16:18								
Sample ID	Client Sample ID	Specimen Type	1. Rotavirus A	PCR	2. Rotavirus B	PCR	3. Rotavirus C	PCR
		1	Result (Ct)	Interpretation	Result (Ct)	Interpretation	Result (Ct)	Interpretation
23-101441-0009	SI POOL	Tissue	18.86	Positive	25.13	Positive	Not detected	Negative

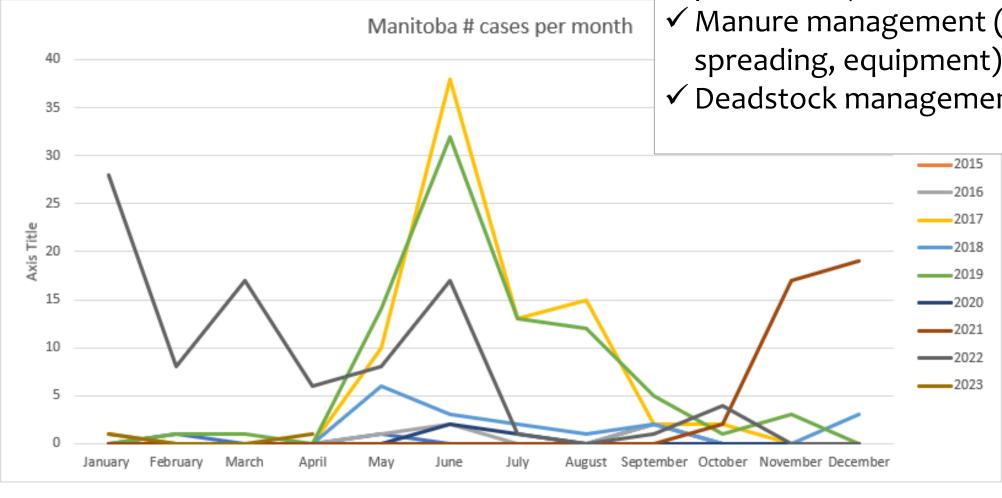
orcine sapovir		d ID:V-005		
Date Authorized:	2023-Nov-	30 16:18		
OI- ID	Oliant Canada ID	O	_ " (20)	
Sample ID	Client Sample ID	Specimen Type	Result (Ct)	Interpretation
23-101441-0009	SI POOL	Tissue	16.82	Positive
	· ·		t .	

Final Thoughts on Sapovirus

- Likely missed Sapovirus disease for some time because lesions are common to other common pathogens and found in mixed infections; not looking!
- Diagnosis can be challenging
- Vaccination seems to be consistent in response
 - Improved PWM
 - 1-2 lbs wean weight increase

PED Cases

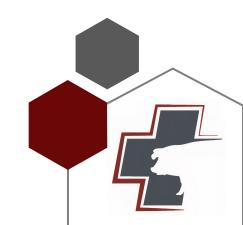
Spring 2023



Annual PED Cases in Ontario

OMAFRA stopped reported PED cases July 15, 2015

Swine Heath Ontario reporting: **ANNUAL CASES** 2019 - 10 2020 - 30 **PED & PDCoV Annually** → PED → PDCoV 2021 - 9 2022 - 21 30 2023 - 27 25 20 15 10 5


Manitoba PED Cases

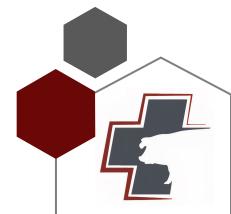
Lessons Learned from PED in Manitoba 2017

- *Continued risks associated with the following areas of activity:
- ✓ Assembly yards (location, layout, procedures)
- ✓ Manure management (handling, storage, spreading, equipment)
- ✓ Deadstock management

Source: Manitoba Pork

What Happened in Spring 2023?

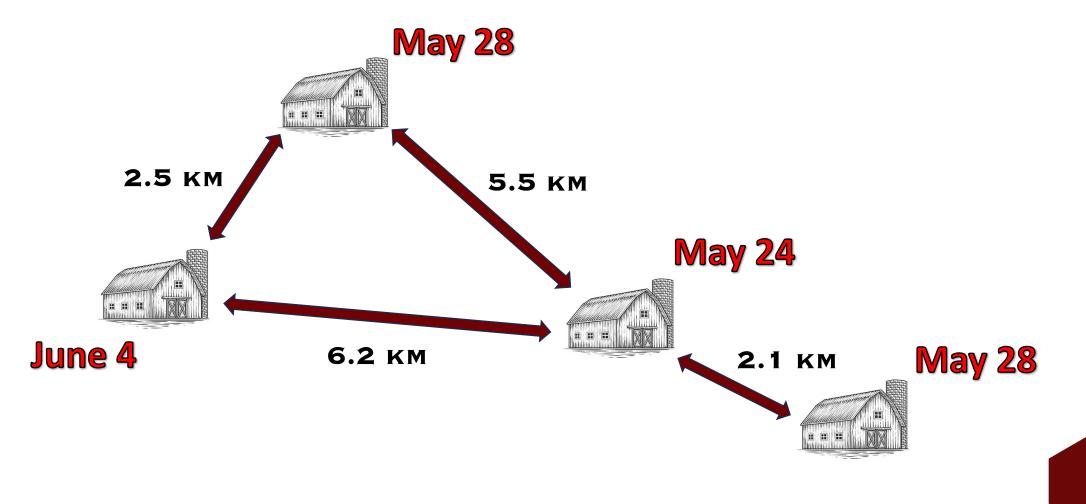
Date	Sow	Nursery	Finisher
Jan 18	X		
Jan 18		>	<
Jan 23		>	<
Feb 14		X	
Mar 29			X
Mar 31			X
Apr 6			X
Apr 14	X		
Apr 25		X	


Sudden increase in sow barn PED outbreaks in a localized area:

• Case 1: May 24

• Case 2: May 28

• Case 3: May 28


• Case 4: June 4

Proximity of PED Cases

Proximity of PED Cases

What Followed?

- Demeter was the vet-of-record for these 4 sites
- STEP 1: Immediately halt movement of pigs and gain a better understanding of extent of infection
- STEP 2: Contain the spread of virus as much as possible

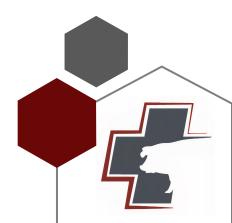
What Followed?

- Demeter was the vet-of-record for these 4 sites
- STEP 1: Immediately halt movement of pigs and gain a better understanding of extent of infection
- STEP 2: Contain the spread of virus as much as possible

What Followed?

- Demeter was the vet-of-record for these 4 sites
- STEP 1: Immediately halt movement of pigs and gain a better understanding of extent of infection
- STEP 2: Contain the spread of virus as much as possible

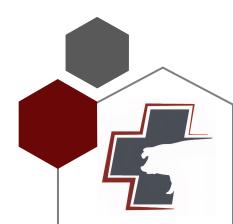
RESULT: Able to contain infection by managing pigs and people!


Why Did This Happen?

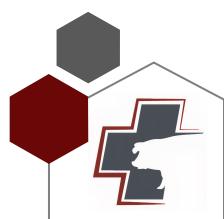
- Common transport <u>may</u> link some of the early 2023 cases, <u>definitely not all</u>
- Some initial cases in 2023 Q1 went undetected
- Manure spreading was being completed in the localized area prior to 4 sow barn outbreaks late May
 - Lessons to learn from Manitoba!
 - Confident 1st case related to cross-contamination of manure spreading equipment*
- Clear biosecurity breaks in cases 2 and 4
 - Contaminated traffic may have brought PED to site, but <u>people</u> moved it further
- These producers were all part of SHARC, but <u>not aware</u> of local April PED cases*

Biosecurity Procedures Compliance

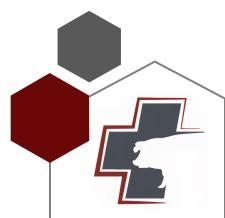
- Quebec poultry farms (Racicot et al., 2012)
- Boots, logbook, controlled areas, coveralls, hand sanitation
- Short-term (first 2 weeks), medium term (6 months later)
- Assessed by video surveillance


Measure	Short-term	Medium-term
Boots		
Entrance Area		
Hand Sanitation		

Biosecurity Procedures Compliance


- Quebec poultry farms (Racicot et al., 2012)
- Boots, logbook, controlled areas, coveralls, hand sanitation
- Short-term (first 2 weeks), medium term (6 months later)
- Assessed by video surveillance

Measure	Short-term	Medium-term	
Boots	93.6%	68.7%	
Entrance Area	26.8%	29.1%	
Hand Sanitation	57.1%	33.0%	


Keys to Success

- Manage positive pigs
- 1st sow barn case of May told everyone immediately
 - Neighbours, feed company, transport, A.I. company...
- Now everyone is more on the look-out!
- Farms continued to call neighbours with every pig movement, some cases <u>even if pigs stable</u>
- Farms had trouble managing people movement between barns when eradicating – often shared people between multiple sites prior to break
- Farms avoided spreading manure after breaks and waited until fall
 - Communicated with neighbours, avoided certain roads

What Can We Learn?

- Communication through the entire industry is absolutely necessary
 - Vet clinics, feed companies, service companies, rendering companies, transport, etc.
- Communication with neighbours is key (regardless of SHARC enrollment!)
- PED and DCoV can be mild in nursery-finishing
- Biosecurity is so important <u>can't take a break!</u>
- Quick action and good planning can reduce the spread
 - Highly infectious virus and easy to move around

Thank you, questions?

rtenbergen@demetersv.com

(519) 362-9100

www.demetersv.com